# NOTE OF ELEMENTARY ANALYSIS II

### CHI-WAI LEUNG

### 1. RIEMANN INTEGRALS

## Notation 1.1.

- (i) : All functions f, g, h... are bounded real valued functions defined on [a, b]. And  $m \leq f \leq M$ .
- (ii) :  $\Re : a = x_0 < x_1 < .... < x_n = b \text{ denotes a partition on } [a, b]; \Delta x_i = x_i x_{i-1} \text{ and } \|\Re\| = \max \Delta x_i.$
- (iii):  $M_i(f, \mathcal{P}) := \sup\{f(x) : x \in [x_{i-1}, x_i]; m_i(f, \mathcal{P}) := \inf\{f(x) : x \in [x_{i-1}, x_i]\}.$  And  $\omega_i(f, \mathcal{P}) = M_i(f, \mathcal{P}) m_i(f, \mathcal{P}).$
- $(iv): U(f, \mathbb{P}) := \sum M_i(f, \mathbb{P}) \Delta x_i; L(f, \mathbb{P}) := \sum m_i(f, \mathbb{P}) \Delta x_i.$
- $(v): \Re(f, \mathcal{P}, \{\xi_i\}) := \sum f(\xi_i) \Delta x_i, \text{ where } \xi_i \in [x_{i-1}, x_i].$
- (vi):  $\Re[a,b]$  is the class of all Riemann integral functions on [a,b].

**Definition 1.2.** We say that the Riemann sum  $\Re(f, \mathbb{P}, \{\xi_i\})$  converges to a number A as  $\|\mathbb{P}\| \to 0$  if for any  $\varepsilon > 0$ , there is  $\delta > 0$  such that

$$|A - \Re(f, \mathcal{P}, \{\xi_i\})| < \varepsilon$$

for any  $\xi_i \in [x_{i-1}, x_i]$  whenever  $\|\mathcal{P}\| < \delta$ .

**Theorem 1.3.**  $f \in \mathcal{R}[a,b]$  if and only if for any  $\varepsilon > 0$ , there is a partition  $\mathcal{P}$  such that  $U(f,\mathcal{P}) - L(f,\mathcal{P}) < \varepsilon$ .

**Lemma 1.4.**  $f \in \mathbb{R}[a,b]$  if and only if for any  $\varepsilon > 0$ , there is  $\delta > 0$  such that  $U(f,\mathbb{P}) - L(f,\mathbb{P}) < \varepsilon$  whenever  $\|\mathbb{P}\| < \delta$ .

*Proof.* The converse follows from Theorem 1.3.

Assume that f is integrable over [a,b]. Let  $\varepsilon > 0$ . Then there is a partition  $\Omega: a = y_0 < ... < y_l = b$  on [a,b] such that  $U(f,Q) - L(f,Q) < \varepsilon$ . Now take  $0 < \delta < \varepsilon/l$ . Suppose that  $\mathcal{P}: a = x_0 < ... < x_n = b$  with  $\|\mathcal{P}\| < \delta$ . Then we have

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) = I + II$$

where

$$I = \sum_{i:Q \cap (x_{i-1}, x_i) = \emptyset} \omega_i(f, \mathcal{P}) \Delta x_i;$$

and

$$II = \sum_{i:Q \cap (x_{i-1}, x_i) \neq \emptyset} \omega_i(f, \mathcal{P}) \Delta x_i$$

Notice that we have

$$I \le U(f, \Omega) - L(f, \Omega) < \varepsilon$$

and

$$II \leq (M-m) \sum_{i:Q \cap (x_{i-1},x_i) \neq \emptyset} \Delta x_i \leq (M-m) \cdot l \cdot \frac{\varepsilon}{l} = (M-m)\varepsilon.$$

The proof is finished.

Date: April 12, 2016.

**Theorem 1.5.**  $f \in \mathbb{R}[a,b]$  if and only if the Riemann sum  $\mathbb{R}(f,\mathbb{P},\{\xi_i\})$  is convergent. In this case,  $\Re(f, \mathcal{P}, \{\xi_i\})$  converges to  $\int_{-\infty}^{b} f(x) dx$  as  $\|\mathcal{P}\| \to 0$ .

*Proof.* For the proof  $(\Rightarrow)$ : we first note that we always have

$$L(f, \mathcal{P}) \leq \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) \leq U(f, \mathcal{P})$$

and

$$L(f, \mathcal{P}) \leq \int_{a}^{b} f(x)dx \leq U(f, \mathcal{P})$$

for any  $\xi_i \in [x_{i-1}, x_i]$  and for all partition  $\mathcal{P}$ .

Now let  $\varepsilon > 0$ . Lemma 1.4 gives  $\delta > 0$  such that  $U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$  as  $\|\mathcal{P}\| < \delta$ . Then we have

$$\left| \int_{a}^{b} f(x)dx - \Re(f, \mathcal{P}, \{\xi_i\}) \right| < \varepsilon$$

as  $\|\mathcal{P}\| < \delta$ . The necessary part is proved and  $\mathcal{R}(f, \mathcal{P}, \{\xi_i\})$  converges to  $\int_{-\delta}^{\delta} f(x) dx$ .

For  $(\Leftarrow)$ : there exists a number A such that for any  $\varepsilon > 0$ , there is  $\delta > 0$ , we have

$$A - \varepsilon < \Re(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon$$

for any partition  $\mathcal{P}$  with  $\|\mathcal{P}\| < \delta$  and  $\xi_i \in [x_{i-1}, x_i]$ .

Now fix a partition  $\mathcal{P}$  with  $\|\mathcal{P}\| < \delta$ . Then for each  $[x_{i-1}, x_i]$ , choose  $\xi_i \in [x_{i-1}, x_i]$  such that  $M_i(f, \mathcal{P}) - \varepsilon \leq f(\xi_i)$ . This implies that we have

$$U(f, \mathcal{P}) - \varepsilon(b - a) \le \mathcal{R}(f, \mathcal{P}, \{\xi_i\}) < A + \varepsilon.$$

So we have shown that for any  $\varepsilon > 0$ , there is a partition  $\mathcal{P}$  such that

(1.1) 
$$\overline{\int_a^b} f(x)dx \le U(f, \mathcal{P}) \le A + \varepsilon(1 + b - a).$$

By considering -f, note that the Riemann sum of -f will converge to -A. The inequality 1.1 will imply that for any  $\varepsilon > 0$ , there is a partition  $\mathcal{P}$  such that

$$A - \varepsilon(1 + b - a) \le \underbrace{\int_a^b f(x) dx} \le \overline{\int_a^b f(x) dx} \le A + \varepsilon(1 + b - a).$$

The proof is finished.

**Theorem 1.6.** Let  $f \in \mathcal{R}[c,d]$  and let  $\phi:[a,b] \longrightarrow [c,d]$  be a strictly increasing  $C^1$  function with f(a) = c and f(b) = d.

Then  $f \circ \phi \in \mathbb{R}[a,b]$ , moreover, we have

$$\int_{c}^{d} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt.$$

*Proof.* Let  $A = \int_c^d f(x) dx$ . By Theorem 1.5, we need to show that for all  $\varepsilon > 0$ , there is  $\delta > 0$  such that

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| < \varepsilon$$

for all  $\xi_k \in [t_{k-1}, t_k]$  whenever  $\Omega: a = t_0 < ... < t_m = b$  with  $\|\Omega\| < \delta$ . Now let  $\varepsilon > 0$ . Then by Lemma 1.4 and Theorem 1.5, there is  $\delta_1 > 0$  such that

$$(1.2) |A - \sum f(\eta_k) \triangle x_k| < \varepsilon$$

and

$$(1.3) \sum \omega_k(f, \mathcal{P}) \triangle x_k < \varepsilon$$

for all  $\eta_k \in [x_{k-1}, x_k]$  whenever  $\mathcal{P} : c = x_0 < ... < x_m = d$  with  $\|\mathcal{P}\| < \delta_1$ . Now put  $x = \phi(t)$  for  $t \in [a, b]$ .

Now since  $\phi$  and  $\phi'$  are continuous on [a,b], there is  $\delta > 0$  such that  $|\phi(t) - \phi(t')| < \delta_1$  and  $|\phi'(t) - \phi'(t')| < \varepsilon$  for all t, t' in [a,b] with  $|t - t'| < \delta$ .

Now let  $\Omega: a = t_0 < ... < t_m = b$  with  $\|\Omega\| < \delta$ . If we put  $x_k = \phi(t_k)$ , then  $\mathcal{P}: c = x_0 < ... < x_m = d$  is a partition on [c, d] with  $\|\mathcal{P}\| < \delta_1$  because  $\phi$  is strictly increasing.

Note that the Mean Value Theorem implies that for each  $[t_{k-1}, t_k]$ , there is  $\xi_k^* \in (t_{k-1}, t_k)$  such that

$$\triangle x_k = \phi(t_k) - \phi(t_{k-1}) = \phi'(\xi_k^*) \triangle t_k.$$

This yields that

$$(1.4) |\Delta x_k - \phi'(\xi_k) \Delta t_k| < \varepsilon \Delta t_k$$

for any  $\xi_k \in [t_{k-1}, t_k]$  for all k = 1, ..., m because of the choice of  $\delta$ . Now for any  $\xi_k \in [t_{k-1}, t_k]$ , we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k| \leq |A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k|$$

$$+ |\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

Notice that inequality 1.2 implies that

$$|A - \sum f(\phi(\xi_k^*))\phi'(\xi_k^*) \triangle t_k| = |A - \sum f(\phi(\xi_k^*)) \triangle x_k| < \varepsilon.$$

Also, since we have  $|\phi'(\xi_k^*) - \phi'(\xi_k)| < \varepsilon$  for all k = 1, ..., m, we have

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k^*)\triangle t_k - \sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k| \le M(b-a)\varepsilon$$

where  $|f(x)| \leq M$  for all  $x \in [c, d]$ .

On the other hand, by using inequality 1.4 we have

$$|\phi'(\xi_k)\triangle t_k| < \triangle x_k + \varepsilon \triangle t_k$$

for all k. This, together with inequality 1.3 imply that

$$|\sum f(\phi(\xi_k^*))\phi'(\xi_k)\triangle t_k - \sum f(\phi(\xi_k))\phi'(\xi_k)\triangle t_k|$$

$$\leq \sum \omega_k(f, \mathcal{P})|\phi'(\xi_k)\triangle t_k| \ (\because \phi(\xi_k^*), \phi(\xi_k) \in [x_{k-1}, x_k])$$

$$\leq \sum \omega_k(f, \mathcal{P})(\triangle x_k + \varepsilon \triangle t_k)$$

$$\leq \varepsilon + 2M(b-a)\varepsilon.$$

Finally by inequality 1.5, we have

$$|A - \sum f(\phi(\xi_k))\phi'(\xi_k)\Delta t_k| \le \varepsilon + M(b-a)\varepsilon + \varepsilon + 2M(b-a)\varepsilon.$$

The proof is finished.

**Example 1.7.** Define (formally) an improper integral  $\Gamma(s)$  (called the  $\Gamma$ -function) as follows:

$$\Gamma(s) := \int_0^\infty x^{s-1} e^{-x} dx$$

for  $s \in \mathbb{R}$ . Then  $\Gamma(s)$  is convergent if and only if s > 0.

*Proof.* Put  $I(s) := \int_0^1 x^{s-1} e^{-x} dx$  and  $II(s) := \int_1^\infty x^{s-1} e^{-x} dx$ . We first claim that the integral II(s) is convergent for all  $s \in \mathbb{R}$ .

In fact, if we fix  $s \in \mathbb{R}$ , then we have

$$\lim_{x \to \infty} \frac{x^{s-1}}{e^{x/2}} = 0.$$

So there is M>1 such that  $\frac{x^{s-1}}{e^{x/2}}\leq 1$  for all  $x\geq M$ . Thus we have

$$0 \le \int_M^\infty x^{s-1} e^{-x} dx \le \int_M^\infty e^{-x/2} dx < \infty.$$

Therefore we need to show that the integral I(s) is convergent if and only if s > 0. Note that for  $0 < \eta < 1$ , we have

$$0 \le \int_{\eta}^{1} x^{s-1} e^{-x} dx \le \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{1}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -\ln \eta & \text{otherwise} \end{cases}$$

Thus the integral  $I(s) = \lim_{\eta \to 0+} \int_{\eta}^{1} x^{s-1} e^{-x} dx$  is convergent if s > 0.

Conversely, we also have

$$\int_{\eta}^{1} x^{s-1} e^{-x} dx \ge e^{-1} \int_{\eta}^{1} x^{s-1} dx = \begin{cases} \frac{e^{-1}}{s} (1 - \eta^{s}) & \text{if } s - 1 \ne -1; \\ -e^{-1} \ln \eta & \text{otherwise} \end{cases}$$

So if  $s \leq 0$ , then  $\int_{\eta}^{1} x^{s-1} e^{-x} dx$  is divergent as  $\eta \to 0+$ . The result follows.

# 2. Uniform Convergence of a Sequence of Differentiable Functions

**Proposition 2.1.** Let  $f_n:(a,b)\longrightarrow \mathbb{R}$  be a sequence of functions. Assume that it satisfies the following conditions:

- (i):  $f_n(x)$  point-wise converges to a function f(x) on (a,b);
- (ii): each  $f_n$  is a  $C^1$  function on (a,b); (iii):  $f'_n \to g$  uniformly on (a,b).

Then f is a  $C^1$ -function on (a,b) with f'=g

*Proof.* Fix  $c \in (a, b)$ . Then for each x with c < x < b (similarly, we can prove it in the same way as a < x < c), the Fundamental Theorem of Calculus implies that

$$f_n(x) = \int_c^x f'(t)dt.$$

Since  $f'_n \to g$  uniformly on (a, b), we see that

$$\int_{c}^{x} f'_{n}(t)dt \longrightarrow \int_{c}^{x} g(t)dt.$$

This gives

(2.1) 
$$f(x) = \int_{c}^{x} g(t)dt.$$

for all  $x \in (c,b)$ . On the other hand, g is continuous on (a,b) since each  $f'_n$  is continuous and  $f'_n \to g$  uniformly on (a,b). Equation 2.1 will tell us that f' exists and f' = g on (c,b). The proof

**Proposition 2.2.** Let  $(f_n)$  be a sequence of differentiable functions defined on (a,b). Assume that

- (i): there is a point  $c \in (a,b)$  such that  $\lim_{n \to \infty} f_n(c)$  exists;
- (ii):  $f'_n$  converges uniformly to a function g on (a,b).

Then

(a):  $f_n$  converges uniformly to a function f on (a,b);

(b): f is differentiable on (a,b) and f'=g.

*Proof.* For Part (a), we will make use the Cauchy theorem.

Let  $\varepsilon > 0$ . Then by the assumptions (i) and (ii), there is a positive integer N such that

$$|f_m(c) - f_n(c)| < \varepsilon$$
 and  $|f'_m(x) - f'_n(x)| < \varepsilon$ 

for all  $m, n \ge N$  and for all  $x \in (a, b)$ . Now fix c < x < b and  $m, n \ge N$ . To apply the Mean Value Theorem for  $f_m - f_n$  on (c, x), then there is a point  $\xi$  between c and x such that

$$(2.2) f_m(x) - f_n(x) = f_m(c) - f_n(c) + (f'_m(\xi) - f'_n(\xi))(x - c).$$

This implies that

$$|f_m(x) - f_n(x)| \le |f_m(c) - f_n(c)| + |f'_m(\xi) - f'_n(\xi)| |x - c| < \varepsilon + (b - a)\varepsilon$$

for all  $m, n \geq N$  and for all  $x \in (c, b)$ . Similarly, when  $x \in (a, c)$ , we also have

$$|f_m(x) - f_n(x)| < \varepsilon + (b - a)\varepsilon.$$

So Part (a) follows.

Let f be the uniform limit of  $(f_n)$  on (a, b)

For Part (b), we fix  $u \in (a, b)$ . We are going to show

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).$$

Let  $\varepsilon > 0$ . Since  $f_n \to f$  and  $f' \to g$  both are uniformly convergent on (a, b). Then there is  $N \in \mathbb{N}$  such that

$$(2.3) |f_m(x) - f_n(x)| < \varepsilon \text{ and } |f'_m(x) - f'_n(x)| < \varepsilon$$

for all  $m, n \ge N$  and for all  $x \in (a, b)$ 

Note that for all  $m \geq N$  and  $x \in (a,b) \setminus \{u\}$ , applying the Mean value Theorem for  $f_m - f_N$  as before, we have

$$\frac{f_m(x) - f_N(x)}{x - u} = \frac{f_m(u) - f_N(u)}{x - u} + (f'_m(\xi) - f'_N(\xi))$$

for some  $\xi$  between u and x.

So Eq.2.3 implies that

$$\left|\frac{f_m(x) - f_m(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon$$

for all  $m \geq N$  and for all  $x \in (a, b)$  with  $x \neq u$ .

Taking  $m \to \infty$  in Eq.2.4, we have

$$\left|\frac{f(x) - f(u)}{x - u} - \frac{f_N(x) - f_N(u)}{x - u}\right| \le \varepsilon.$$

Hence we have

$$\left| \frac{f(x) - f(u)}{x - u} - f'_{N}(u) \right| \leq \left| \frac{f(x) - f(u)}{x - c} - \frac{f_{N}(x) - f_{N}(u)}{x - u} \right| + \left| \frac{f_{N}(x) - f_{N}(u)}{x - u} - f'_{N}(u) \right|$$
$$\leq \varepsilon + \left| \frac{f_{N}(x) - f_{N}(u)}{x - u} - f'_{N}(u) \right|.$$

So if we can take  $0 < \delta$  such that  $\left| \frac{f_N(x) - f_N(u)}{x - u} - f_N'(u) \right| < \varepsilon$  for  $0 < |x - u| < \delta$ , then we have

$$\left|\frac{f(x) - f(u)}{x - u} - f_N'(u)\right| \le 2\varepsilon$$

for  $0<|x-u|<\delta$ . On the other hand, by the choice of N, we have  $|f_m'(y)-f_N'(y)|<\varepsilon$  for all  $y\in(a,b)$  and  $m\geq N$ . So we have  $|g(u)-f_N'(u)|\leq\varepsilon$ . This together with Eq.2.5 give

$$\left|\frac{f(x) - f(u)}{x - u} - g(u)\right| \le 3\varepsilon$$

as  $0 < |x - u| < \delta$ , that is we have

$$\lim_{x \to u} \frac{f(x) - f(u)}{x - u} = g(u).$$

The proof is finished.

**Remark 2.3.** The uniform convergence assumption of  $(f'_n)$  in Propositions 2.1 and 2.2 is essential.

**Example 2.4.** Let  $f_n(x) := \tan^{-1} nx$  for  $x \in (-1,1)$ . Then we have

$$f(x) := \lim_{n} \tan^{-1} nx = \begin{cases} \pi/2 & \text{if } x > 0; \\ 0 & \text{if } x = 0; \\ -\pi/2 & \text{if } x < 0. \end{cases}$$

Also  $g(x) := \lim_n f'_n(x) = \lim_n 1/(1+n^2x^2) = 0$  for all  $x \in (-1,1)$ . So Propositions 2.1 and 2.2 does not hold. Note that  $(f'_n)$  does not converge uniformly to g on (-1,1).

# 3. Absolutely convergent series

Throughout this section, let  $(a_n)$  be a sequence of complex numbers.

**Definition 3.1.** We say that a series  $\sum_{n=1}^{\infty} a_n$  is absolutely convergent if  $\sum_{n=1}^{\infty} |a_n| < \infty$ .

Also a convergent series  $\sum_{n=1}^{\infty} a_n$  is said to be conditionally convergent if it is not absolute convergent.

**Example 3.2. Important Example**: The series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$  is conditionally convergent when  $0 < \alpha \le 1$ .

This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.

For instance, if we consider the function  $f:[1,\infty)\longrightarrow \mathbb{R}$  given by

$$f(x) = \frac{(-1)^{n+1}}{n^{\alpha}}$$
 if  $n \le x < n+1$ .

If  $\alpha = 1/2$ , then  $\int_{1}^{\infty} f(x)dx$  is convergent but it is neither absolutely convergent nor square integrable.

Notation 3.3. Let  $\sigma: \{1, 2...\} \longrightarrow \{1, 2...\}$  be a bijection. A formal series  $\sum_{n=1}^{\infty} a_{\sigma(n)}$  is called an rearrangement of  $\sum_{n=1}^{\infty} a_n$ .

**Example 3.4.** In this example, we are going to show that there is an rearrangement of the series  $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$  is divergent although the original series is convergent. In fact, it is conditionally

We first notice that the series  $\sum_{i=1}^{\infty} \frac{1}{2i-1}$  diverges to infinity. Thus for each M>0, there is a positive integer N such that

$$\sum_{i=1}^{n} \frac{1}{2i-1} \ge M \qquad \cdots (*)$$

for all  $n \geq N$ . Then there is  $N_1 \in \mathbb{N}$  such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} > 1.$$

By using (\*) again, there is a positive integer  $N_2$  with  $N_1 < N_2$  such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{\substack{N_1 < i \le N_2}} \frac{1}{2i-1} - \frac{1}{4} > 2.$$

To repeat the same procedure, we can find a positive integers subsequence  $(N_k)$  such that

$$\sum_{i=1}^{N_1} \frac{1}{2i-1} - \frac{1}{2} + \sum_{N_1 < i \le N_2} \frac{1}{2i-1} - \frac{1}{4} + \dots - \sum_{N_{k-1} < i \le N_k} \frac{1}{2i-1} - \frac{1}{2k} > k$$

for all positive integers k. So if we let  $a_n = \frac{(-1)^{n+1}}{n}$ , then one can find a bijection  $\sigma : \mathbb{N} \to \mathbb{N}$  such that the series  $\sum_{i=1}^{\infty} a_{\sigma(i)}$  is an rearrangement of the series  $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$  and diverges to infinity. The proof is finished

**Theorem 3.5.** Let  $\sum_{n=1}^{\infty} a_n$  be an absolutely convergent series. Then for any rearrangement  $\sum_{n=1}^{\infty} a_{\sigma(n)}$ 

is also absolutely convergent. Moreover, we have  $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} a_{\sigma(n)}$ .

*Proof.* Let  $\sigma: \{1, 2...\} \longrightarrow \{1, 2...\}$  be a bijection as before.

We first claim that  $\sum_{n} a_{\sigma(n)}$  is also absolutely convergent. Let  $\varepsilon > 0$ . Since  $\sum_{n} |a_{n}| < \infty$ , there is a positive integer N such that

$$|a_{N+1}| + \cdots + |a_{N+p}| < \varepsilon$$
 ········(\*)

for all p=1,2... Notice that since  $\sigma$  is a bijection, we can find a positive integer M such that  $M > \max\{j : 1 \le \sigma(j) \le N\}$ . Then  $\sigma(i) \ge N$  if  $i \ge M$ . This together with (\*) imply that if  $i \ge M$ and  $p \in \mathbb{N}$ , we have

$$|a_{\sigma(i+1)}| + \cdots + |a_{\sigma(i+p)}| < \varepsilon.$$

Thus the series  $\sum_n a_{\sigma(n)}$  is absolutely convergent by the Cauchy criteria. Finally we claim that  $\sum_n a_n = \sum_n a_{\sigma(n)}$ . Put  $l = \sum_n a_n$  and  $l' = \sum_n a_{\sigma(n)}$ . Now let  $\varepsilon > 0$ . Then there is  $N \in \mathbb{N}$  such that

$$|l - \sum_{n=1}^{N} a_n| < \varepsilon$$
 and  $|a_{N+1}| + \dots + |a_{N+p}| < \varepsilon \dots (**)$ 

for all  $p \in \mathbb{N}$ . Now choose a positive integer M large enough so that  $\{1,...,N\} \subseteq \{\sigma(1),...,\sigma(M)\}$  and  $|l'-\sum_{i=1}^M a_{\sigma(i)}| < \varepsilon$ . Notice that since we have  $\{1,...,N\} \subseteq \{\sigma(1),...,\sigma(M)\}$ , the condition (\*\*) gives

$$\left|\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}\right| \le \sum_{N < i < \infty} |a_i| \le \varepsilon.$$

We can now conclude that

$$|l-l'| \le |l-\sum_{n=1}^{N} a_n| + |\sum_{n=1}^{N} a_n - \sum_{i=1}^{M} a_{\sigma(i)}| + |\sum_{i=1}^{M} a_{\sigma(i)} - l'| \le 3\varepsilon.$$

The proof is complete.

### References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

 $E ext{-}mail\ address: cwleung@math.cuhk.edu.hk}$