NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. Riemann Integrals

Notation 1.1.
(i) : All functions $f, g, h \ldots$ are bounded real valued functions defined on $[a, b]$. And $m \leq f \leq M$.
(ii) : $\mathcal{P}: a=x_{0}<x_{1}<\ldots<x_{n}=b$ denotes a partition on $[a, b] ; \Delta x_{i}=x_{i}-x_{i-1}$ and $\|\mathcal{P}\|=\max \Delta x_{i}$.
(iii) : $M_{i}(f, \mathcal{P}):=\sup \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} ; m_{i}(f, \mathcal{P}):=\inf \left\{f(x): x \in\left[x_{i-1}, x_{i}\right\} . \quad\right.\right.$ And $\omega_{i}(f, \mathcal{P})=M_{i}(f, \mathcal{P})-m_{i}(f, \mathcal{P})$.
(iv) : $U(f, \mathcal{P}):=\sum M_{i}(f, \mathcal{P}) \Delta x_{i} ; L(f, \mathcal{P}):=\sum m_{i}(f, \mathcal{P}) \Delta x_{i}$.
(v) : $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right):=\sum f\left(\xi_{i}\right) \Delta x_{i}$, where $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
(vi) : $\mathcal{R}[a, b]$ is the class of all Riemann integral functions on $[a, b]$.

Definition 1.2. We say that the Riemann $\operatorname{sum} \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to a number A as $\|\mathcal{P}\| \rightarrow 0$ if for any $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ whenever $\|\mathcal{P}\|<\delta$.
Theorem 1.3. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is a partition \mathcal{P} such that $U(f, \mathcal{P})-$ $L(f, \mathcal{P})<\varepsilon$.
Lemma 1.4. $f \in \mathcal{R}[a, b]$ if and only if for any $\varepsilon>0$, there is $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$ whenever $\|\mathcal{P}\|<\delta$.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over $[a, b]$. Let $\varepsilon>0$. Then there is a partition $Q: a=y_{0}<\ldots<y_{l}=b$ on $[a, b]$ such that $U(f, Q)-L(f, Q)<\varepsilon$. Now take $0<\delta<\varepsilon / l$. Suppose that $\mathcal{P}: a=x_{0}<\ldots<$ $x_{n}=b$ with $\|\mathcal{P}\|<\delta$. Then we have

$$
U(f, \mathcal{P})-L(f, \mathcal{P})=I+I I
$$

where

$$
I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right)=\emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i}
$$

and

$$
I I=\sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \omega_{i}(f, \mathcal{P}) \Delta x_{i}
$$

Notice that we have

$$
I \leq U(f, \mathcal{Q})-L(f, \mathcal{Q})<\varepsilon
$$

and

$$
I I \leq(M-m) \sum_{i: Q \cap\left(x_{i-1}, x_{i}\right) \neq \emptyset} \Delta x_{i} \leq(M-m) \cdot l \cdot \frac{\varepsilon}{l}=(M-m) \varepsilon
$$

The proof is finished.

Theorem 1.5. $f \in \mathcal{R}[a, b]$ if and only if the Riemann $\operatorname{sum} \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ is convergent. In this case, $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$ as $\|\mathcal{P}\| \rightarrow 0$.
Proof. For the proof (\Rightarrow) : we first note that we always have

$$
L(f, \mathcal{P}) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right) \leq U(f, \mathcal{P})
$$

and

$$
L(f, \mathcal{P}) \leq \int_{a}^{b} f(x) d x \leq U(f, \mathcal{P})
$$

for any $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ and for all partition \mathcal{P}.
Now let $\varepsilon>0$. Lemma 1.4 gives $\delta>0$ such that $U(f, \mathcal{P})-L(f, \mathcal{P})<\varepsilon$ as $\|\mathcal{P}\|<\delta$. Then we have

$$
\left|\int_{a}^{b} f(x) d x-\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)\right|<\varepsilon
$$

as $\|\mathcal{P}\|<\delta$. The necessary part is proved and $\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)$ converges to $\int_{a}^{b} f(x) d x$. For (\Leftarrow) : there exists a number A such that for any $\varepsilon>0$, there is $\delta>0$, we have

$$
A-\varepsilon<\mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon
$$

for any partition \mathcal{P} with $\|\mathcal{P}\|<\delta$ and $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$.
Now fix a partition \mathcal{P} with $\|\mathcal{P}\|<\delta$. Then for each $\left[x_{i-1}, x_{i}\right]$, choose $\xi_{i} \in\left[x_{i-1}, x_{i}\right]$ such that $M_{i}(f, \mathcal{P})-\varepsilon \leq f\left(\xi_{i}\right)$. This implies that we have

$$
U(f, \mathcal{P})-\varepsilon(b-a) \leq \mathcal{R}\left(f, \mathcal{P},\left\{\xi_{i}\right\}\right)<A+\varepsilon .
$$

So we have shown that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
\begin{equation*}
\overline{\int_{a}^{b}} f(x) d x \leq U(f, \mathcal{P}) \leq A+\varepsilon(1+b-a) \tag{1.1}
\end{equation*}
$$

By considering $-f$, note that the Riemann sum of $-f$ will converge to $-A$. The inequality 1.1 will imply that for any $\varepsilon>0$, there is a partition \mathcal{P} such that

$$
A-\varepsilon(1+b-a) \leq \underline{\int_{a}^{b}} f(x) d x \leq \overline{\int_{a}^{b}} f(x) d x \leq A+\varepsilon(1+b-a) .
$$

The proof is finished.
Theorem 1.6. Let $f \in \mathcal{R}[c, d]$ and let $\phi:[a, b] \longrightarrow[c, d]$ be a strictly increasing C^{1} function with $f(a)=c$ and $f(b)=d$.
Then $f \circ \phi \in \mathcal{R}[a, b]$, moreover, we have

$$
\int_{c}^{d} f(x) d x=\int_{a}^{b} f(\phi(t)) \phi^{\prime}(t) d t
$$

Proof. Let $A=\int_{c}^{d} f(x) d x$. By Theorem 1.5, we need to show that for all $\varepsilon>0$, there is $\delta>0$ such that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon
$$

for all $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ whenever $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathbb{Q}\|<\delta$.
Now let $\varepsilon>0$. Then by Lemma 1.4 and Theorem 1.5, there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\left|A-\sum f\left(\eta_{k}\right) \triangle x_{k}\right|<\varepsilon \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum \omega_{k}(f, \mathcal{P}) \triangle x_{k}<\varepsilon \tag{1.3}
\end{equation*}
$$

for all $\eta_{k} \in\left[x_{k-1}, x_{k}\right]$ whenever $\mathcal{P}: c=x_{0}<\ldots<x_{m}=d$ with $\|\mathcal{P}\|<\delta_{1}$.
Now put $x=\phi(t)$ for $t \in[a, b]$.
Now since ϕ and ϕ^{\prime} are continuous on $[a, b]$, there is $\delta>0$ such that $\left|\phi(t)-\phi\left(t^{\prime}\right)\right|<\delta_{1}$ and $\left|\phi^{\prime}(t)-\phi^{\prime}\left(t^{\prime}\right)\right|<\varepsilon$ for all t, t^{\prime} in $[a, b]$ with $\left|t-t^{\prime}\right|<\delta$.
Now let $\mathcal{Q}: a=t_{0}<\ldots<t_{m}=b$ with $\|\mathcal{Q}\|<\delta$. If we put $x_{k}=\phi\left(t_{k}\right)$, then $\mathcal{P}: c=x_{0}<\ldots<x_{m}=$ d is a partition on $[c, d]$ with $\|\mathcal{P}\|<\delta_{1}$ because ϕ is strictly increasing.
Note that the Mean Value Theorem implies that for each $\left[t_{k-1}, t_{k}\right]$, there is $\xi_{k}^{*} \in\left(t_{k-1}, t_{k}\right)$ such that

$$
\triangle x_{k}=\phi\left(t_{k}\right)-\phi\left(t_{k-1}\right)=\phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}
$$

This yields that

$$
\begin{equation*}
\left|\triangle x_{k}-\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|<\varepsilon \Delta t_{k} \tag{1.4}
\end{equation*}
$$

for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$ for all $k=1, \ldots, m$ because of the choice of δ.
Now for any $\xi_{k} \in\left[t_{k-1}, t_{k}\right]$, we have

$$
\begin{align*}
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| & \leq\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right| \\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \tag{1.5}\\
& +\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|
\end{align*}
$$

Notice that inequality 1.2 implies that

$$
\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}\right|=\left|A-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \triangle x_{k}\right|<\varepsilon
$$

Also, since we have $\left|\phi^{\prime}\left(\xi_{k}^{*}\right)-\phi^{\prime}\left(\xi_{k}\right)\right|<\varepsilon$ for all $k=1, . ., m$, we have

$$
\left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}^{*}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq M(b-a) \varepsilon
$$

where $|f(x)| \leq M$ for all $x \in[c, d]$.
On the other hand, by using inequality 1.4 we have

$$
\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \triangle x_{k}+\varepsilon \Delta t_{k}
$$

for all k. This, together with inequality 1.3 imply that

$$
\begin{aligned}
& \left|\sum f\left(\phi\left(\xi_{k}^{*}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left|\phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right|\left(\because \phi\left(\xi_{k}^{*}\right), \phi\left(\xi_{k}\right) \in\left[x_{k-1}, x_{k}\right]\right) \\
& \leq \sum \omega_{k}(f, \mathcal{P})\left(\triangle x_{k}+\varepsilon \triangle t_{k}\right) \\
& \leq \varepsilon+2 M(b-a) \varepsilon
\end{aligned}
$$

Finally by inequality 1.5 , we have

$$
\left|A-\sum f\left(\phi\left(\xi_{k}\right)\right) \phi^{\prime}\left(\xi_{k}\right) \triangle t_{k}\right| \leq \varepsilon+M(b-a) \varepsilon+\varepsilon+2 M(b-a) \varepsilon
$$

The proof is finished.
Example 1.7. Define (formally) an improper integral $\Gamma(s)$ (called the Γ-function) as follows:

$$
\Gamma(s):=\int_{0}^{\infty} x^{s-1} e^{-x} d x
$$

for $s \in \mathbb{R}$. Then $\Gamma(s)$ is convergent if and only if $s>0$.

Proof. Put $I(s):=\int_{0}^{1} x^{s-1} e^{-x} d x$ and $I I(s):=\int_{1}^{\infty} x^{s-1} e^{-x} d x$. We first claim that the integral $I I(s)$ is convergent for all $s \in \mathbb{R}$.
In fact, if we fix $s \in \mathbb{R}$, then we have

$$
\lim _{x \rightarrow \infty} \frac{x^{s-1}}{e^{x / 2}}=0
$$

So there is $M>1$ such that $\frac{x^{s-1}}{e^{x / 2}} \leq 1$ for all $x \geq M$. Thus we have

$$
0 \leq \int_{M}^{\infty} x^{s-1} e^{-x} d x \leq \int_{M}^{\infty} e^{-x / 2} d x<\infty
$$

Therefore we need to show that the integral $I(s)$ is convergent if and only if $s>0$.
Note that for $0<\eta<1$, we have

$$
0 \leq \int_{\eta}^{1} x^{s-1} e^{-x} d x \leq \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{1}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -\ln \eta & \text { otherwise }\end{cases}
$$

Thus the integral $I(s)=\lim _{\eta \rightarrow 0+} \int_{\eta}^{1} x^{s-1} e^{-x} d x$ is convergent if $s>0$.
Conversely, we also have

$$
\int_{\eta}^{1} x^{s-1} e^{-x} d x \geq e^{-1} \int_{\eta}^{1} x^{s-1} d x= \begin{cases}\frac{e^{-1}}{s}\left(1-\eta^{s}\right) & \text { if } s-1 \neq-1 \\ -e^{-1} \ln \eta & \text { otherwise }\end{cases}
$$

So if $s \leq 0$, then $\int_{\eta}^{1} x^{s-1} e^{-x} d x$ is divergent as $\eta \rightarrow 0+$. The result follows.

2. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 2.1. Let $f_{n}:(a, b) \longrightarrow \mathbb{R}$ be a sequence of functions. Assume that it satisfies the following conditions:
(i) : $f_{n}(x)$ point-wise converges to a function $f(x)$ on (a, b);
(ii) : each f_{n} is a C^{1} function on (a, b);
(iii) : $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b).

Then f is a C^{1}-function on (a, b) with $f^{\prime}=g$.
Proof. Fix $c \in(a, b)$. Then for each x with $c<x<b$ (similarly, we can prove it in the same way as $a<x<c$), the Fundamental Theorem of Calculus implies that

$$
f_{n}(x)=\int_{c}^{x} f^{\prime}(t) d t
$$

Since $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b), we see that

$$
\int_{c}^{x} f_{n}^{\prime}(t) d t \longrightarrow \int_{c}^{x} g(t) d t
$$

This gives

$$
\begin{equation*}
f(x)=\int_{c}^{x} g(t) d t \tag{2.1}
\end{equation*}
$$

for all $x \in(c, b)$. On the other hand, g is continuous on (a, b) since each f_{n}^{\prime} is continuous and $f_{n}^{\prime} \rightarrow g$ uniformly on (a, b). Equation 2.1 will tell us that f^{\prime} exists and $f^{\prime}=g$ on (c, b). The proof is finished.

Proposition 2.2. Let $\left(f_{n}\right)$ be a sequence of differentiable functions defined on (a, b). Assume that
(i): there is a point $c \in(a, b)$ such that $\lim f_{n}(c)$ exists;
(ii): f_{n}^{\prime} converges uniformly to a function g on (a, b).

Then
(a): f_{n} converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and $f^{\prime}=g$.

Proof. For Part (a), we will make use the Cauchy theorem.
Let $\varepsilon>0$. Then by the assumptions (i) and $(i i)$, there is a positive integer N such that

$$
\left|f_{m}(c)-f_{n}(c)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon
$$

for all $m, n \geq N$ and for all $x \in(a, b)$. Now fix $c<x<b$ and $m, n \geq N$. To apply the Mean Value Theorem for $f_{m}-f_{n}$ on (c, x), then there is a point ξ between c and x such that

$$
\begin{equation*}
f_{m}(x)-f_{n}(x)=f_{m}(c)-f_{n}(c)+\left(f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right)(x-c) \tag{2.2}
\end{equation*}
$$

This implies that

$$
\left|f_{m}(x)-f_{n}(x)\right| \leq\left|f_{m}(c)-f_{n}(c)\right|+\left|f_{m}^{\prime}(\xi)-f_{n}^{\prime}(\xi)\right||x-c|<\varepsilon+(b-a) \varepsilon
$$

for all $m, n \geq N$ and for all $x \in(c, b)$. Similarly, when $x \in(a, c)$, we also have

$$
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon+(b-a) \varepsilon
$$

So Part (a) follows.
Let f be the uniform limit of $\left(f_{n}\right)$ on (a, b)
For Part (b), we fix $u \in(a, b)$. We are going to show

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u)
$$

Let $\varepsilon>0$. Since $f_{n} \rightarrow f$ and $f^{\prime} \rightarrow g$ both are uniformly convergent on (a, b). Then there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|f_{m}(x)-f_{n}(x)\right|<\varepsilon \quad \text { and } \quad\left|f_{m}^{\prime}(x)-f_{n}^{\prime}(x)\right|<\varepsilon \tag{2.3}
\end{equation*}
$$

for all $m, n \geq N$ and for all $x \in(a, b)$
Note that for all $m \geq N$ and $x \in(a, b) \backslash\{u\}$, applying the Mean value Theorem for $f_{m}-f_{N}$ as before, we have

$$
\frac{f_{m}(x)-f_{N}(x)}{x-u}=\frac{f_{m}(u)-f_{N}(u)}{x-u}+\left(f_{m}^{\prime}(\xi)-f_{N}^{\prime}(\xi)\right)
$$

for some ξ between u and x.
So Eq. 2.3 implies that

$$
\begin{equation*}
\left|\frac{f_{m}(x)-f_{m}(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon \tag{2.4}
\end{equation*}
$$

for all $m \geq N$ and for all $x \in(a, b)$ with $x \neq u$.
Taking $m \rightarrow \infty$ in Eq.2.4, we have

$$
\left|\frac{f(x)-f(u)}{x-u}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right| \leq \varepsilon
$$

Hence we have

$$
\begin{aligned}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| & \leq\left|\frac{f(x)-f(u)}{x-c}-\frac{f_{N}(x)-f_{N}(u)}{x-u}\right|+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right| \\
& \leq \varepsilon+\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|
\end{aligned}
$$

So if we can take $0<\delta$ such that $\left|\frac{f_{N}(x)-f_{N}(u)}{x-u}-f_{N}^{\prime}(u)\right|<\varepsilon$ for $0<|x-u|<\delta$, then we have

$$
\begin{equation*}
\left|\frac{f(x)-f(u)}{x-u}-f_{N}^{\prime}(u)\right| \leq 2 \varepsilon \tag{2.5}
\end{equation*}
$$

for $0<|x-u|<\delta$. On the other hand, by the choice of N, we have $\left|f_{m}^{\prime}(y)-f_{N}^{\prime}(y)\right|<\varepsilon$ for all $y \in(a, b)$ and $m \geq N$. So we have $\left|g(u)-f_{N}^{\prime}(u)\right| \leq \varepsilon$. This together with Eq. 2.5 give

$$
\left|\frac{f(x)-f(u)}{x-u}-g(u)\right| \leq 3 \varepsilon
$$

as $0<|x-u|<\delta$, that is we have

$$
\lim _{x \rightarrow u} \frac{f(x)-f(u)}{x-u}=g(u) .
$$

The proof is finished.

Remark 2.3. The uniform convergence assumption of $\left(f_{n}^{\prime}\right)$ in Propositions 2.1 and 2.2 is essential.
Example 2.4. Let $f_{n}(x):=\tan ^{-1} n x$ for $x \in(-1,1)$. Then we have

$$
f(x):=\lim _{n} \tan ^{-1} n x= \begin{cases}\pi / 2 & \text { if } x>0 ; \\ 0 & \text { if } x=0 ; \\ -\pi / 2 & \text { if } x<0\end{cases}
$$

Also $g(x):=\lim _{n} f_{n}^{\prime}(x)=\lim _{n} 1 /\left(1+n^{2} x^{2}\right)=0$ for all $x \in(-1,1)$. So Propositions 2.1 and 2.2 does not hold. Note that $\left(f_{n}^{\prime}\right)$ does not converge uniformly to g on $(-1,1)$.

3. Absolutely convergent series

Throughout this section, let $\left(a_{n}\right)$ be a sequence of complex numbers.
Definition 3.1. We say that a series $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.
Also a convergent series $\sum_{n=1}^{\infty} a_{n}$ is said to be conditionally convergent if it is not absolute convergent.
Example 3.2. Important Example : The series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{\alpha}}$ is conditionally convergent when $0<\alpha \leq 1$.
This example shows us that a convergent improper integral may fail to the absolute convergence or square integrable property.
For instance, if we consider the function $f:[1, \infty) \longrightarrow \mathbb{R}$ given by

$$
f(x)=\frac{(-1)^{n+1}}{n^{\alpha}} \quad \text { if } \quad n \leq x<n+1 .
$$

If $\alpha=1 / 2$, then $\int_{1}^{\infty} f(x) d x$ is convergent but it is neither absolutely convergent nor square integrable.

Notation 3.3. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots$.$\} be a bijection. A formal series \sum_{n=1}^{\infty} a_{\sigma(n)}$ is called an rearrangement of $\sum_{n=1}^{\infty} a_{n}$.

Example 3.4. In this example, we are going to show that there is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ is divergent although the original series is convergent. In fact, it is conditionally convergent.
We first notice that the series $\sum_{i} \frac{1}{2 i-1}$ diverges to infinity. Thus for each $M>0$, there is a positive integer N such that

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{1}{2 i-1} \geq M \tag{*}
\end{equation*}
$$

for all $n \geq N$. Then there is $N_{1} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}>1
$$

By using (*) again, there is a positive integer N_{2} with $N_{1}<N_{2}$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}>2
$$

To repeat the same procedure, we can find a positive integers subsequence $\left(N_{k}\right)$ such that

$$
\sum_{i=1}^{N_{1}} \frac{1}{2 i-1}-\frac{1}{2}+\sum_{N_{1}<i \leq N_{2}} \frac{1}{2 i-1}-\frac{1}{4}+\cdots \cdots \cdots-\sum_{N_{k-1}<i \leq N_{k}} \frac{1}{2 i-1}-\frac{1}{2 k}>k
$$

for all positive integers k. So if we let $a_{n}=\frac{(-1)^{n+1}}{n}$, then one can find a bijection $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ such that the series $\sum_{i=1}^{\infty} a_{\sigma(i)}$ is an rearrangement of the series $\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i}$ and diverges to infinity. The proof is finished.
Theorem 3.5. Let $\sum_{n=1}^{\infty} a_{n}$ be an absolutely convergent series. Then for any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is also absolutely convergent. Moreover, we have $\sum_{n=1}^{\infty} a_{n}=\sum_{n=1}^{\infty} a_{\sigma(n)}$.
Proof. Let $\sigma:\{1,2 \ldots\} \longrightarrow\{1,2 \ldots\}$ be a bijection as before.
We first claim that $\sum_{n} a_{\sigma(n)}$ is also absolutely convergent.
Let $\varepsilon>0$. Since $\sum_{n}\left|a_{n}\right|<\infty$, there is a positive integer N such that

$$
\begin{equation*}
\left|a_{N+1}\right|+\cdots \cdots \cdots \cdot+\left|a_{N+p}\right|<\varepsilon \tag{*}
\end{equation*}
$$

for all $p=1,2 \ldots$. Notice that since σ is a bijection, we can find a positive integer M such that $M>\max \{j: 1 \leq \sigma(j) \leq N\}$. Then $\sigma(i) \geq N$ if $i \geq M$. This together with (*) imply that if $i \geq M$ and $p \in \mathbb{N}$, we have

$$
\left|a_{\sigma(i+1)}\right|+\cdots \cdots \cdots \cdot\left|a_{\sigma(i+p)}\right|<\varepsilon .
$$

Thus the series $\sum_{n} a_{\sigma(n)}$ is absolutely convergent by the Cauchy criteria.
Finally we claim that $\sum_{n} a_{n}=\sum_{n} a_{\sigma(n)}$. Put $l=\sum_{n} a_{n}$ and $l^{\prime}=\sum_{n} a_{\sigma(n)}$. Now let $\varepsilon>0$. Then there is $N \in \mathbb{N}$ such that

$$
\left|l-\sum_{n=1}^{N} a_{n}\right|<\varepsilon \quad \text { and } \quad\left|a_{N+1}\right|+\cdots \cdots+\left|a_{N+p}\right|<\varepsilon \cdots \cdots \cdots(* *)
$$

for all $p \in \mathbb{N}$. Now choose a positive integer M large enough so that $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$ and $\left|l^{\prime}-\sum_{i=1}^{M} a_{\sigma(i)}\right|<\varepsilon$. Notice that since we have $\{1, \ldots, N\} \subseteq\{\sigma(1), \ldots, \sigma(M)\}$, the condition $(* *)$ gives

$$
\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right| \leq \sum_{N<i<\infty}\left|a_{i}\right| \leq \varepsilon .
$$

We can now conclude that

$$
\left|l-l^{\prime}\right| \leq\left|l-\sum_{n=1}^{N} a_{n}\right|+\left|\sum_{n=1}^{N} a_{n}-\sum_{i=1}^{M} a_{\sigma(i)}\right|+\left|\sum_{i=1}^{M} a_{\sigma(i)}-l^{\prime}\right| \leq 3 \varepsilon .
$$

The proof is complete.

References

(Chi-Wai Leung) Department of Mathematics, The Chinese University of Hong Kong, Shatin, Hong Kong

E-mail address: cwleung@math.cuhk.edu.hk

